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Abstract: An algorithm for finding a complete set of nonequivalent labelings of a symmetric object and applications of the al- 
gorithm to problems in chemistry are presented. 

Combinatorial problems which deal with finding a com- 
plete set of nonisomorphic objects under various constraints 
and based upon various concepts of isomorphism occur in 
many phases of chemistry. Solutions to some have been 
achieved using sophisticated applications of graph theory 
and group theory.3%4 Perhaps the most common such prob- 
lem involves attaching, in all unique ways, a fixed set of lig- 
ands to a given molecular skeleton.5.h This can be viewed as 
a labeling problem, in which all distinct assignments of a 
given set of labels to the parts of a symmetric object are 
sought. In developing the concepts set forth by Lederberg,’ 
we have found that the labeling problem is common to 
many aspects of the generation of acyclic and cyclic isomers 
(see accompanying paper).* Herein, our solution to the la- 
beling problem is presented. 

Part A of this paper may be read as a brief tutorial on the 
nature of the problem and an introduction to the tyminolo- 
gy found in more technical treatments. Part B is a textual 
description of a method for the solution of this type of prob- 
lem. Part C is a summary of the procedure in a more algo- 
rithmic form; an even more formal description and a proof 
of correctness is available elsewhere.# In part D, certain 
generalizations of the basic algorithm are presented. Final- 
ly, in part E, a sample application of the method to a com- 

’ plex isomerism problem in organic chemistry is outlined. 
The algorithm described here represents a concrete pro- 

cedure for the solution of problems which previously were 
solvable only via “intuition.” An intuitive approach to la- 
beling problems is satisfactory for small cases, but can easi- 
ly break down when applied to more complex problems, 
e.g.. the adamantane example in part D. It has been known 
how to compute the number of solutions,“b.” but an efficient 
method of actually constructing the solutions has not pre- 

viously been published;rO certainly the latter information is 
of substantially greater use to a chemist, as he is interested 
in the identity of each structure. 

A computerized version of the labeling algorithm has 
been coded in the INTERLISP language. It is imbedded 
within the structure generator described in the accompa- 
nying paper,2 and a listing of the source text of the program 
will be provided by the authors upon request. The program 
itself is available for use as described in the Experimental 
Section of ref 2. 

The labeling program has been tested extensively using 
cases for which numbers of solutions have been pub- 
lished.4b,‘c In each case, the program was used to construct 
the complete set of labelings, the solutions were counted, 
and the count was compared with the published value. No 
discrepancies have been found except in the largest case 
checked by the program of the node labeling of naphthalene 
(six labels of one type, two of a second, and two of a third). 
In this case, Balaban and Harary4b obtained a count of 329 
solutions, while we obtained 330; further investigation 
showed that the expansion of the “generating function”4b 
for naphthalene was incorrect in this and at least one higher 
term, and that 330 was in fact the correct figure. 

Part A. Definitions 

The object to be labeled may correspond to any finite col- 
lection of discrete parts (e.g., faces of a cube or atoms of a 
molecule), as long as the symmetries of the object can be 
described as rearrangements of the parts which leave the 
object unchanged. The labels may be any properties or en- 
tities which can be associated with the parts (e.g., colors. 
ligands. isotopic “tags”). as long as the labels themselves 
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nodes i and j are connected similarly in each. for all i and 
j. One result is that, for labeling problems in chemistry, the 
valences of an atom are completely interchangeable (i.e.. 
these valences have no spatial orientation). When stereo- 
chemical considerations are important, topological equiva- 
lence may not be sufficiently strong. In such cases other 
types of equivalence, phrased in terms of superimposability 
of two numbered skeletons, can be used. The test for topolo- 
gical equivalence is particularly simple, though, and is satis- 
factory for many chemical situations. 

Permutations and Permutation Groups. Given a number- 
ing of a graph as a reference, one can use a condensed nota- 
tion to write down other numberings. All that is needed is a 
list of integers which are reassigned, respectively, to nodes 1 
through n of the reference. Using 2a as a reference, con- 
densed notations for 2a-c are given in Table 11. In the 2b 

are not altered by the symmetry operations on the object. 
Although the method described here is general, parts A-C 
of this paper will be concerned with a specific type of prob- 
lem: the labeling of the nodes of a graph, where each node 
receives just one label. In chemical terms, a graph is a mo- 
lecular skeleton (“cyclic ske1eton”2) devoid of both atom 
names and three-dimensional information. The atom posi- 
tions in a graph are called nodes, and the bonds are called 
edges (multiple edges are allowed). Discussion of the gen- 
eralizations of the method is postponed until part D. 

Numbering and its Relationship to Symmetry. In the dis- 
cussion of symmetry, it is necessary for one to define some 
frame of reference within which to work. In this paper, a 
numbering of the graph (Le., an association of integers I 
through n to the n nodes of the graph) is used for this pur- 
pose, and the relationship between different numberings is 
used to characterize symmetry. 

For a fixed orientation of an n-node graph, there are n! 
ways of numbering. If the graph has no symmetry, then 
each of these ways is distinct from the rest. However, if 
there is some symmetry, as for example, in the decalin skel- 
eton (I), then relative to any particular numbering (e.g., 

co 
1 

2a), some of the ways are different (e.g., 2b), while others 
are symmetrically equivalent (e.g., 2~). Intuitively, 2a and 

2a 2b 2c 

2c are equivalent, because one can rotate 2a about the 3-8 
axis to obtain 2c. There is an explicit way of determining 
the topological “sameness” of such numberings which is 
easily applied to even complicated cases, and which is well 
suited to computer applications. 

Two numberings of a graph are equivnlent if the connection 
table derived from one can be made identical with that derived 
from the other by rearrangements of the rows and of the connec- 
tion lists within each row. 

Table I contains the connection tables of structures 2a-c, 
written in a standard, ordered form (with node numbers as- 
cending and each connection list ascending). Because the 
ordered connection table for 2a is identical with that of 2c, 
while that of 2b is different, 2a and 2c are equivalent, while 
2b is distinct. 

The above definition of equivalence deals only with to- 
pological properties. If two numberings of a graph are 
equivalent, then node i has the same valence in each, the 

Table II. Condensed Notations for Numberings Za-c 

(Reference) 2a: 1 2 3 4 5 6 7 8 9 10 
b: 2 7 8 1 9 - 10 4 6 3 
c: 5 4 3 2 I 1: 9 8 7 6 

case, the row of numbers means that the node numbered I 
in 2a is now numbered 2, the node numbered 2 in 2a is now 
numbered 7, and so on. 

With this notation, one can view a numbering as a trans- 
formation which carries the integers (1, 2, , n) into 
themselves in a one-to-one fashion. Such transformations 
are called permutations. The permutation x for 2c, for ex- 
ample, is azc( 1) = 5, ~~(2) = 4, nzr(3) = 3, , nlc( IO) = 
6, while that for the reference is the identity rqp(i) = i. i = 
1, 2, , n. 

The symmetry of any graph is fully described by the set 
of numberings which are equivalent to the reference. The 
permutations corresponding to these satisfy the properties 
of a mathematical group, called the symmetry group of the 
graph. More explicitly: 

The symmetry group of a graph is the set of all permutations 
whose corresponding numberings yield ordered connection ta- 
bles identical with that of the reference numbering. 

If, in the definition of equivalence, properties other than 
the connection table are used, other types of symmetry 
groups may be defined in an analogous manner. For the de- 
calin skeleton, there are four permutations in the symmetry 
group. These topological symmetries, given in Table 111, 

Table III. The Symmetry Group of the Decalin Skeletona 

TI 1 2 3 4 5 6 7 8 9 10 
7rv 5 4 3 2 I 10 9 8 7 6 

711 10 9 8 7 6 5 4 3 2 KlSO 6 7 8 9 10 1 2 3 4 : 

U The reference numbering here corresponds to 2a. 
TableI. Connection Tables for Structures Za-c 

---2a..p-. -----2b---. 

Connection Connection 
Node Ll31 Node List 

-----& -~-_ 
Connection 

Node Li3t 

1 2.10 
2 1.3 
3 2J.8 
1 3.5 
5 4.6 
6 5.7 
7 6.8 
8 3.7.9 
9 8.10 

IO 1.9 

I 8.9 I 2.10 
2 3.7 2 I.3 
3 2.6 3 2.4.8 
4 6.X.10 1 3.5 

:, 9.10 3.4 :i 4.6 5.7 
7 2.8 7 6.X 
x I .A.7 8 3.7.9 
Y I.5 Y x.10 

IO 4.5 IO I.9 

correspond directly to the geometric symmetries TI = iden- 
tity, ry = rotation about the vertical (3-8) axis, Xh = rota- 
tion about the horizontal axis, and ~1x0 = in-plane rotation 
(all are 180’ rotations). 

Representation of Labelings. Once a reference numbering 
has been chosen, one can define a compact notation for la- 
belings as well as numberings. All that is needed is a list of 
symbols which represent the labels associated, respectively, 
with nodes I, 2, , n in the reference. Thus, with 2a as 
the reference, labelings 3a-c of the nodes of the decalin 
skeleton have the following representations. 

In these cases, the symbols used for representation are 
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3a 3b 3.2 

3a: h- B C‘ (’ c N <’ (‘ (’ (’ 
b: N (’ c (‘ N C’ (’ H (’ (’ 
c: N (‘ r (‘ (’ N H c’ (’ (’ 

identical with the labels themselves, but in general any kind 
of symbol may be used as long as the correspondence be- 
tween symbols and labels is understood. 

Equivalence Classes and Canonical Labelings. Permuta- 
tions, discussed earlier in terms of numberings, can be 
thought of as operators which act upon labelings. The ac- 
tion of the permutation 

!,I, . . I, 

on the representation of a labeling is interpreted as follows. 
Replace the symbol in position I with that in I,, replace the 
symbol in position 2 with that in I?, and so on. Thus, the 
permutation 

r = 18346572109 

acting upon 3a gives 3b. 
Two labelings of the nodes of a graph are equivalent if 

and only if at least one permutation in the group of the 
graph, when acting upon one labeling, yields the other. 
Thus 3a and 3c arc equivalent. because T:~(, in Table 111, 
.w hen applied to 3a. yields 3c. 

Given a labeling, it is possible to generate all other label- 
ings which arc equivalent by applying to it each permuta- 
‘ion in the symmetr> group. The labelings obtained in this 
\rar. :aken ;is ‘1 set !r.e.. wtth idcnticai reprc\enrattons 
clirninated). form ,irl cyurr,nlrncr c~ias.s of i;tbciing\. Table 
i\ .how\ the cqu~~aicnce class to uhich 3a (arid 3c) 
?CiMlC!\. 

The problem treated in this paper i\ one of finding a com- 
pictc ii\t 01‘ nonequ~~~~ient labelings. v.hich Lirnounls to se- 
lccting cu:~ctly one representative from each cquivalencc 
class 01‘ labcltng\. This goal is reaiired most efficiently it 
one can dcf‘inc some property ol‘ the labelings which auto- 
matically distinguishes one member of each class as somr- 
how unique. One method is to sort the labelings on the basis 
of their representations, thus establishing an ordering of 
thcrn. One can then define the unique !abeling in an cquiva- 
lcncc class lo bc the “smallest” member, that is. the one 
which occurs first in the sorted list. Such a labeling will bc 
called ;I I~n~ro~~ic~ul one. 

To sort ;I list of representations, one needs (in addition to 
;I reference numbering) an ordering of the label symbols. 
This ordering is arbitrary but must be used consistently for 
any particular cquivalencc class. For example. in labeling 
the dccatin skclcton <+ith IWO U’s. one B. and seven C’s, one 
might choozc the alphabetic convention B < C < W. Onec 
the !.tbcl \\rnbt)l\ h;t\ c been ordcrzd. the rcprcsentation5 01 
an> t~+o labeltngs c‘an bc compared, \~rrn~,l-by-symbol. \vith 
the first inequality est.tbii>hing the ovcr.tll ordering of the 

labelings. (This is just a “dictionary” ordering of represen- 
tations.) Thus, 3a is “smaller” than 3c because, although 
the first symbols in their representations are equal, the sec- 
ond symbol (B) of 3a is “smaller” than the second symbol 
(C) of 3c. With the alphabetic convention, n,(3a) in Table 
IV is the smallest member of its equivalence class and is 
thus a canonical labeling. 

The concept of canonicity is used in the kernel technique 
(below) to establish specific “target” labelings in each 
equivalence class. Thus, the problem of generating all 
members of a class and comparing them to eliminate sym- 
metry duplicates is avoided. 

Part B. Solution to the Labeling Problem 

An obvious method of finding the distinct labelings 
would be to generate all possible labelings and, for each, to 
check if an equivalent one was previously constructed. Un- 
fortunately. this method can take an exorbitant amount of 
computation. Below, a method is discussed which we believe 
uses an amount of time roughly proportional to the number 
of solutions (i.e.. the number of equivalence classes of label- 
ings) and requires only knowledge of the symmetry group, 
in terms of permutations. Thus, the procedure is useful for 
labeling objects using their geometric symmetry’! as well as 
the topological symmetry defined above. We first discuss 
several special cases. then outline the solution to the general 
problem. 

1. Special Cases. There are three special cams oi labcl- 
ing in which the problem can be solved immediately II- 
rhough the) may be amenable to treatment Mith the more 
general algorithm, their solution is computationally <impler. 
‘he<c \pcc~al casts ::re frequently encountered in the reduc- 
lItin\ (jee below 1 oi the general problem 

!.I. One Type of Label. If the number i>t i:!bci< of :i 
zlvcn t\pe is equal to the number of nodes I<? be i,iheicd. 
-hen :herc I\ ant! one :v::y to carry out the labe!ins -\ check 
!or thts :ri!,iai case is necessary. because zuhprobicms CJ~ 

:hih Ivrm arc often cn~ountered during orbit rccuriton (SW 
ht’i,lM I 

1.2. Two Types of Labels and One Label of a Gilen T> pe. 
in cases where there is [)ne iabel of a given type ind t7 - I 

,lf.~nother (where 17 is the number of nodes to bc !abcled). it 
I\ oni\ necessary to identify the classes of symmetricall\ rc- 
lared-nodes. or orhirs. ’ 2 and. fo r each orbit. to associate 
the Gngle label with one node therein. Thus. the number of 
disttnct labelings is equal to the number of orbits. Vvithin 
etch orbit. the single label is by, convention :ts<aciated \+ith 
the node u hich bears the smallest reference number. 

For the decalin skeleton. there are three orbit\. marked 
\\ith *, +. .tnd # in J. if the graph is to be !abeied uith one 

“I 
/-\ /-\* # 

“\+/#\+/ f 

h and nine “blanks.” each distinct labeling corresponds to 
the association of an \ \vith the “first” node of each orbit. 
Thus. there arc three distinct labelings Sa-c (2a is used as 
the reference numbering). 

5a 5b .5c 

I .3. Two Types of Labels and an t’nsymmetric Graph. 
\V’hcn there is no symmrtry (i.z.. the group consists of only 
the identtty permutation). and there are t&o label type> (rl, 
of t hc I‘ir\t ty pc and !I - 17, of the second). the Lbeling re- 



duces to a simple combinatorial problem: given n distinct 
objects, find all distinct ways of selecting n 1 of them. This 
can be accomplished by the following recursiveI algorithm. 
To find all selections of k objects out of a set S whose size 
is n 

(1) If k = 1, pick each element of the set S. in turn, to 
obtain n solutions. 

(2) If k = n, the set S comprises the only solution. 
(3) Otherwise, pick an element x from S: 

(a) Find all selections of k objects out of the set S 
- (x). (b) Find ail selections of k - I objects 
out of the set S - (x), and to each of these add 
the element x. (c) The solution is the union of 
the results from steps 3a and 3b. 

A subset of S with k elements either contains the ele- 
ment x or n&. In case 3a, one finds those selections which 
do not contain x, while in 3b, one finds those that do. Each 
of these cases is simpler than the original selection problem, 
because the size of the set, as well as the value of k in 3b, is 
reduced. The terminating conditions (k = 1 or k equal to 
the size of the set) ensure that the process will halt. 

2. General Case. In the general labeling case, there are 
two important techniques used to reduce the problem. The 
first is called label recursion I 3 and the second orbit recur- 
sion. The idea behind label recursion is th,at one can deal 
with just two types of labels at a time. The idea behind orbit 
recursion is that one can label just one orbit at a time. 
These reductions are discussed in detail below. 

2.1. Label Recursion. If one is given many (more than 
two) kinds of labels, say nl of type 1, nl of type 2, . . , nk 
of type k, one may proceed as follows. Solve the labeling 
problem for n I labels of type 1 and n 1 + n 3 + . . + nk la- 
bels of another type, called “blank.” Take each of the re- 
sults and label the “blank” nodes with nl labels of type 2 
and n3 f + nk “blanks,” and so forth. It has been 
proved8 that the result of this series of steps, each of which 
is carried out with only two types of labels, is a list of all 
distinct solutions to the original problem. 

Each labeling step may reduce the symmetry of the 
object being labeled. Therefore, after each such step it is 
necessary to calculate the new group, termed the reduced 
symmetry group, ’ 4 of the graph before proceeding to the 
next step. 

It is computationally most efficient to order the k types 
of labels so that n 1 I n2 I . . 5 nk. Special cases are 
more likely to be encountered immediately, and, in general, 
it is easiest to label a graph when the number of labels of 
one type is small. Also, each labeling tends to reduce the 
symmetry of the graph, making subsequent labelings sim- 
pler. 

To treat an example, consider the labeling of the decalin 
skeleton with one N, one B, and eight C’s, One first labels 
with one N and nine “blanks,” an instance of special case 
1.2. The result is the set of three labelings discussed above, 
Sa-c. There are now three new problems: to label the 

“blanks” of Sa-c, under their respective reduced sym- 
metries, with one B and eight C’s, and again special case 1.2 
is applicable. For 5a and 5b, placement of the N has de- 
stroyed all symmetry of the graph, and thus each “blank” 
has its own orbit. Therefore, there are nine distinct label- 
ings in each case. For SC, there are five orbits in the reduced 
symmetry group, and five labeled structures result (6a-e). 

Note that the above labelings all reduce to one of the spe- 
cial cases. Had there been more than one N or B, the meth- 
ods described below would have been needed, 

2.2. Orbit Recursion. As a result of label recursion, each 
labeling step is carried out with at most two types of labels. 
say n 1 of one type and nz of another. Here, n I + nz = n. 

6a 6b 6c 

6d 6e 

the number of nodes to be labeled. When no special cases 
apply, one has by definition a graph with some symmetry, 
and n l,nz > 1. If, in addition, the nodes fall into more than 
one orbit, further simplification is possible. 

Suppose one of the orbits is chosen, customarily the one 
containing the node of lowest reference number. The prob- 
lem can then be treated in two stages. First, the nodes with- 
in the orbit are labeled with a subset of the given label set; 
then, for each partial labeling thus obtained, the remaining 
nodes (i.e., those not in the chosen orbit) are labeled with 
the remaining labels, using the reduced symmetry group. 
Several cases must usually be considered in this fashion, 
each corresponding to a distribution of the given labels over 
the two types of nodes. 

Consider, for example, the labeling of the decalin skele- 
ton with three N’s and seven C’s, The four-node orbit 
(1,5,6,10) is chosen, and the labels are partitioned into the 
four possible distributions shown in Table V. Each case may 

Table V. Partitions of Three N’s and Seven C’s between the Orbit 
(1,5.6,10) and the Remaining Nodes in the Decalin Skeleton,, 

Labels going to orbit Labels going to 
---(1.5.6.10)--- ---remainins nodes--- 

Case no. No. of N’s No. of C’s No. of N’s No. of C’s 

1 3 1 0 6 
2 2 2 I 5 
3 1 3 2 4 
4 0 4 3 3 

a The reference numbering here correrponds to 2a. 

be solved independently. Focusing upon case 3, the first 
stage involves the labeling of (1,5,6,10) with one N and 
three C’s. This is an instance of special case 1.2, and be- 
cause there is only one orbit, one labeling (7) results. The 

7 

second stage involves the labeling of the remaining nodes 
(2,3,4,7,8,9) with the two N’s and four C’s, The initial la- 
beling has removed all symmetry from the graph, and thus 
this stage reduces to special case I .3. There are 15 ways to 
pick two elements from (2.3,4,7.8.9): 

(2.3). (2.4). (2.7). (2.X). (2.9) 

(3.4). (3.7). (3.X). (3.9) 

(4.7). (4.8). (4.9) 
(7.8). (7.9) 

(8.9) 
Associating the two N’s with the two chosen nodes in each 
case yields 15 distinct labelings, the first three of which are 

shown (8a-c). 

8a Sb 8c 
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2.3. Kernel Technique. I.abcl and orbit recursion usually 
rcducc the gcncral labcling problem to one of the special 
C;IXX given abuvc. Howcvcr. situations occur (t~.g.. cast 2 01 
Table \,‘) in whtch an WI- node orbit is to receive IM r > I la- 
bels of a first type and or 2 > I labels of a kccond. No fur- 
thcr reductions arc possible. and a \pccial method called the 
Xrrnrl rrr~hniqur has been developed to treat this funda- 
mental labeling problem. 

The goal of the kernel technique is the generation of all 
canonical labelings (see part A) of the orbit with the given 
label set. In the ordering of representations, it will be as- 
sumed here that a label of the first type is “smaller” than 
one of the second type. The procedure is a constructive one 
in which nodes with successively higher node numbers are 
given labels. i\t a typical intermediate stage. partial label- 
ings LX of the first k nodes are used as starting points for 
the labeling of the (k + I )th node. For each LA, one or two 
cast‘s are considered. The (k + I )th node may receive a 
Iabcl of either type, but one or the other of these possibili- 
ties may be invalid (i.e.. if M t labels of the first type or ml 
labels of the second already appear in LA ). The newly con- 
structed partial labelings Lk+r are then tested as described 
below, and only those which do not violate the canonicity 
condition are retained for the generation of the Lk+:‘s. It 
can be shown that any canonical labeling must associate a 
label of the first (smaller) type with the first node of the 
orbit, and thus only one L, is needed to begin the proce- 
dure. The process terminates when k reaches m, and the 
complete labelings are tested for canonicity in the usual 
fashion (see part A). 

The purpose of testing the partial labelings is to elimi- 
natc. as early in the construction as possible, those uhich 
can never form the basis for a canonical labeling. An at- 
tempt is made. therefore, to show that for at least one pcr- 
mutation IT in the (possibly reduced) symmetry group of the 
graph. a given partial labeling L, could never be “smaller” 
than the image H(L,) of L, under s. Preliminary to the pre- 
sentation of the actual test. it is necessary to discuss the rep- 
rcscntation of partial labelings. 

A partial labeling L, can bc represented as a list of WI 
\vmbols ahich indicate the labels associated, respectively. 
uith the first, second. , nr th node 01’ the orbit. For clari- 
ty. label symbols are omitted for nodes which are not in the 
orbtt. The symbol 0 stands for a label of the first type, 1 for 
.I label of the second type. and the symbol ‘*-” is used to in- 
dicatc that a node has not vet been labeled. Thus. the first.; 
\ymbol\ in the representation of Lj arc of the 0 ! type. and 
these ,trc followed by rr~~,/ symbols “-.” The representation 
for i;( 1.. ) contains the same number of O’s, 1’s. and symbols 
.. ‘. but (possibly) in ;I different order. dctcrmined by the - 
‘iction of rr on the reprcscntation of /.: (~c part A). 

The testing is done bv filling in the symbols .‘-” of /., 
wrth 0‘s. thu\ defining a full labcllng. c:~Ilcd min(f., ). uhich 
i\ ;LX \mall as or smaller than C1ny other labcling created 
from I.,. Similarly. for each K. the symbols “-” of ir(L,) 
;trc filled in with I ‘s. thus defining a labeling. called max- 
(~i( 1.; ) I. u hich is as large as or larger than any image of I., 
under K. If there is a T such that min(l.,) is larger than 
111:1x( a(f., )). then I., cannot possibly give rise to a canonical 
I:tbeling and ma) thus be discarded. f’igurc I shot&s an cx- 
;lrnplc of :! parttat labeling uhich would bc climinatcd in 
rhr\ \L.I!. ,tr\uming C < Y. Hcrc 

1. 0 10 ---- 
!I, : II i I .,I 0 1 0 0 0 0 

:1nt1 l’or. I hc threefold rotation 

1 2 

Figure 1. The skeleton currespondIng to pribmane: (a) reference num- 
bertng: (b) a partlnl labeling from which no canon~al full labeling can 
be derived 

L; z &! ‘4 :“I, ,‘>,O 
4. 

Figure 2. Summan ol’the steps in labeling the orbit (1.5.h.10) of the 
dwxlin skeleton with two C’s and IWO N’s, The refcrencc numbering 
correspond\ to 2a and the label symbol> are ordered C < \. 

Because the first elements of min(L 3) and max(r(Li )) are 
equal. the second elements must be compared. giving 

miniI. ~‘I -I 111ax(s~l ,)I 

This indicates that Lj may be excluded in the construction 
of all further labelings. 

If a full labeling is tested in this fashion (i.e.. if there arc 
no <ymbols *‘?*’ in the representation). this procedure rc- 
duces to the standard canonicity test. 

In the decalin example. the orbit labelings arc particular- 
ly simple in that a “noncanonical” partial labeling is never 
gcnersted. Figure 2 summarizes the steps in labeling the 
orbit ( I ,5.6. IO) with two N-5 and two C’s (cast ‘7 of Tublc 
V), a problem for which there are three solutions. To com- 
plete this case. one would need to compute the reduced sym- 
metry group of each of the three labelings in Figure 2, and 
for each to label the remaining nodes with one N and five 
C’s using special cast I .?. 

Part C. Summary of Labeling Steps 

The Problem. Given a graph with II nodes, along with its 
symmetry group. find all noncquivalcnt ways of attaching 
to the nodes w given labels which arc not ncccssarily dis- 
ttnct. The svmmctry group is usually cuprcsscd as a set of 
pcrmutatiot;s relative to a rcfcrcncc numbering of the 
graph. 

The Solution. The \tcps arc best dcscrtbcd :I< three nest- 
cd. rccursivc procedures. The process begins uith a call” to 
procedure I: the rcsultx returned from this call constitute 
the dcsircd set of labclings. Phc parallel bctwccn the fol- 
lowing algorithm and the preceding textual description is 
indtcatcd by the numbers \vithirt square brackets. These 
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ln our approach to the exhaustive generation of cyclic 

and acyclic isomers,’ there are two general types of prob- 

lems other than node labeling: the labeling of edges and of 

free valences. In each case, a simple modification of the 

basic algorithm allows for an efficient solution to the prob- 

lem. 

Edge Labeling. Under some circumstances, one might 
wish to label the edges of a graph rather than the nodes. In- 
stead of numbering the edges and obtaining the symmetry 
group independently, one can use the group on the nodes to 
simplify the situation. Let the representation for each edge 
be the unordered pair of numbers indicating the nodes at 
the end points of the edge. Then each permutation r, in the 
symmetry group of the graph gives rise to a permutation xi’ 
in the symmetry group on the edges, defined by 

refer to the section numbers in part B. 
Procedure 1. Any Number of Label Types and Orbits. 

(A) If there are less than three label types, call procedure II di- 
rectly and return (from I) the results. 

(B) Otherwise, carry out label recursion [ 2. I ] as follows. 
(1) Calling procedure II, label the nodes with labels of one 

type, using “blank” labels for the remaining types. 
(2) For each of these partial labelings, compute the reduced 

symmetry group and, calling procedure I recursively, 
label the “blank” nodes with the remaining labels. 

(3) Return (from I) the list of full labelings thus obtained. 
Procedure II. Two Label Types, Any Number of Orbits. 

(A) Test for special cases [I] as follows. . 
(1) 

(2) 

(3) 

If there is only one label type [l.l] (trivial case), return 
the labeling directly. 
If there is only one label of either type [I .2], compute the 
orbits and return (from II) the list of labelings which re- 
sult from assigning the single label to the first node in 
each orbit. 
If the symmetry group consists of only the identity per- 
mutation [l.3], call the algorithm described in part B, 
section 1.3, and return (from II) the results. 

(B) Compute the orbits. 
(C) If there is only one orbit, call procedure III directly and re- 

turn (from II) the results. 
(D) Otherwise, carry out orbit recursion 12.21 as follows. 

(1) 

(2) 

(3) 

Choose the orbit which contains the node of lowest refer- 
ence number and partition the labels in all possible ways 
between the orbit and the remaining nodes. 
For each partition, do the following: (a) call procedure II 
recursively to label the chosen orbit with the label set for 
this partition; (b) for each of these partial labelings. com- 
pute the reduced symmetry group and, calling procedure 
II recursively, label the remaining nodes with the remain- 
ing labels for this partition. 
Return (from II) the collected results of (2). 

Procedure 111. Two Label Types and One Orbit. “Kernel Tech- 
nique” [2.3]. 

(A) Attach a label of the first type to the first node of the orbit. 
(B) Extend the current labeline as follows. 

il) 
(2) 

(3) 

(4) 

If all nodes of the orbit Kave been labeled, then place the 
labeling on the output list and go to (4). 
If any labels of the first type remain, then (a) place a 
label of the first type on the first unlabeled node of the 
orbit; (b) test this extended labeling Lk checking that, for 
each permutation ?F in the (possibly reduced) symmetry 
group of the graph, min(Lk) is not larger than max- 
(n(Lk)); (c) if the test is passed, call (B) recursively to 
further extend the labeling; (d) remove the label placed in 
(a), thus “contracting” the labeling to its previous state. 
If any labels of the second type remain, exercise a proce- 
dure completely analogous to steps 2a-d, but using labels 
of the second, rather than first, type. 
Return (from B). 

(C) Return (from III) the output list 

Part D. Generalizations of the Method 

The labeling algorithm has been described in the context 
of labeling the nodes of a graph. However, the only infor- 
mation needed to carry out these steps is: (a) the number of 
each type of label; and (b) a group of permutations describ- 
ing the symmetry of the object relative to a reference num- 
bering of the parts. Thus, the procedures are applicable to 
any problem for which the above information is available. 
For example, the labeling of the decalin skeleton with three 
N’s and seven C’s is equivalent to finding all ways of black- 
ening three (and whitening seven) of the rectangular faces 
of 9 such that no symmetry duplicates are produced, assum- 
ing that 9 is free to undergo rotations and reflections in the 
plane. 

1 I I f / I 
9 

Thus, for example, TV in Table III generates xye as follows 

n”e(1,2) = n,(l), 7,(Z) = 5,4 = 4,5 
v(2,3) = ~(2), Ti,(3) = 4,3 = 3,4 

and so on. Table VI shows the complete symmetry group on 
the edges of the decalin skeleton (2a is used as the reference 
numbering). 

Finding the set of possible epoxides derived from the de- 
calin skeleton is an example of an edge-labeling problem, 
Here, there are I1 labels: one bridging oxygen and ten 
“blanks.” The labeling falls under special case I of the algo- 
rithm. Examination of Table VI shows that the edges fall 
into four orbits: 

(1,2 4,5 9,lO 6,7) 
(2,3 3,4 a,9 7,8) 
(3,8) 
(5,6 1,101 

Assigning the single label to one edge in each orbit, one ob- 
tains the four solutions lOa-d. 

0 

co 
1Oa 

Go 0 

cb 
10b 

03) 
1OC 1Od 

In a graph with one or more multiple edges, the same 
procedure can be used to obtain the symmetry group, but 
during the labeling, multiple edges need to receive more 
than one label. This problem shares some common features 
with free-valance labeling, and the general approach will be 
discussed at the end of the following section, 

Free-Valence Labeling. In the case of free-valance label- 
ing, each node in the graph has some number of equiva- 
lent I6 free valences, which are the parts to be labeled. 
The labels consist of ligands. Rather than number the free 
valences and compute the symmetry group independently, 
one can use the group on the nodes (which may be a re- 
duced symmetry group if some of the original symmetry of 
the graph is destroyed by the distribution of free valences 
and/or by the presence of atom names on the nodes) togeth- 
er with a modified algorithm. 

One modification affects special case I .3 (see part B). 
which is now inapplicable unless each free valence to be la- 
beled is attached to a different node. This is because even 
though a structure has no symmetry interrelating its atoms. 
there will still be valid permutations which interchange the 

free valences upon any node that carries two or more. 

Smith, pt al. / Artifi’cial Intelligencefor C‘h<~mical Inference 
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Table VI. Symmetry Group” of the Edges of the Decalin Skeleton” 

T,” 1.2 2.3 3,8 3,4 4s 5.6 67 7,8 879 9,IO 1.10 
T\" 4.5 3.4 3.8 2,3 12 1,lO 9,lO 8,9 738 6,7 5.6 
iTI>” 9,lO 839 3.8 7,8 637 5,6 4s 3,4 2,3 1.2 1,lO 
Xld” 6.7 7.8 3.8 8.9 9,lO I,10 12 2.3 3,4 4,5 5.6 

” See Table III for the node permutations which generate these edge permutations. b The reference numbering here corresponds to 2a. 

A second modification affects orbit recursion. The orbits 
of the nodes are calculated, and one orbit is selected as be- 
fore, but one must then distribute the labels over the free 
valences (rather than nodes) within and not within the 
orbit. The m nodes in the chosen orbit have the same num- 
ber, say v. of free valences, and thus the orbit must be as- 
signed (m X v) labels. Suppose, for example, that one wish- 
es to label the 18 free valences in 11 with 4 OH’s and 14 

H’s, If the chosen orbit is (1,5,6,10) (2a is the reference 
numbering), then m = 4 and v = 2. Thus, the orbit must 
receive eight labels and the remaining nodes, ten. The possi- 
ble distributions are shown in Table VII. 

The final modification influences the kernel technique, 
which is now carried out in two stages: a grouping stage 
and a labeling stage. In the grouping stage, the labels are 
partitioned, in all distinct ways, into m sets of v labels each 
(m and v being respectively the number of nodes in the 
orbit and the number of free valences on each node). Each 
set is called a multilabel of degree v and represents a set of 
ligands which may be attached to any node of the orbit. A 
familiar example would be the gem- dimethyl group, a mul- 
tilabel of degree 2. Because the multilabels of each partition 
are to be associated with nodes rather than free valences, 
standard node-labeling techniques may be used in the label- 
ing stage to find all unique associations. 

In the decalin example, consider case 1 of Table VII. 

Table VII. Partitions of 4 OH’s and 14 H’s between the Free 
Valances of Orbit (1,5,6, IO) and the Remaining Free Valences of lla 

Labels going to orbit Labels going to 
----( 1,5.6,10)---- --remaining nodes----. 

Case. no. No. of OH’s No. of H’s No. of OH’s No. of H’s 

I 4 4 0 10 
2 3 5 1 9 
3 2 6 2 8 
4 1 7 3 7 
5 0 8 4 6 

u The reference numbering here corresponds to 2a. 

Here, there are four OH’s and four H’s to be attached to 
the eight free valences of the orbit (1,5,6,10) in 11. There 
are three ways to partition the eight labels into four multila- 
bels of degree 2. 

(OH,OH) (OH,OH) (H,H) (H,H: (partition 1) 
or (OH,OH) (OH,H) (OH,HI (H,H) (partition 2) 
or (OH,H) (OH,H) (OH,H) (OH,FI) (partition 3) 

For each partition, the nodes of the orbit (1,5,6,10) must be 

labeled with the multilabel set. This is particularly simple 

for partition 3, because only one type of multilabel 

[(OH,H)] is present. Application of special case I .1 (part 
b) yields only one solution (12). 

.&q-o” 
HO-OH 

H H 

12 

In partition 1, there are two multilabels of the type 
(OH,OH) and two of the type (H,H), and thus, the stan- 
dard kernel technique must be used. The situation here is 
precisely analogous to the labeling of the nodes in the orbit 
(1,5;6,10) with two N’s and two C’s, which was given as an 
example in part B, section 2.3 (see also Figure 2). Three la- 
belings (13a-c) result from this application of the standard 
kernel technique to partition 1. 

H&$;H. &$ 

HO OH HO H 
l3a Wb 

OH 

$0 

H 

OH 

H OH 

l3c 

Partition 2 is somewhat more complex. There is one label 
of the two types (OH,OH) and (H,H), and two of type 
(OH,H). Because there are three label types, label recur- 
sion (part B, section 2.1) is necessary. As the first step, the 
nodes may be labeled with one (OH,OH) and three 
“blanks,” for which special case 1.2 is used. There is only 
one orbit, so one partial labeling (14) results. The “blanks” 

HO 

HO 

03 
14 

of 14 must then be labeled with two multilabels (0H.H) 
and one multilabel (H,H), and again special case 1.2 is ap- 
plicable. Because 14 has no symmetry relating its nodes, 
each of 5, 6, and IO constitutes a separate orbit, and thus 
three solutions (15a-c) are obtained. 

zJJ$ HoJy&~ 

H H H H 

15a 15b 

HO H 

HO OH 

H 
4s 

OH 

H H 

Kc 
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Using the modified kernel technique. then. one obtains 
seven solutiona (12. 12a-c, and t5a-c) to the labcling of the 
chosen orbit in case I of Table VII. 

The modifications discussed here can bc viewed in a con- 
text more general than that of free-valence labeling. In es- 
sence. the fret-valence labeling is simply a node labeling in 
which each node receives not just one label. but as many la- 
bels us it has free valences. This kind of problem. in which 
some or all of the parts of a symmetric object receive fixed 
numbers of labels other than one, occurs in other contexts. 
most notably in the edge labeling of graphs uith one or 
more multiple edges. The above modifications of the basic 
algorithm may be transferred directI> to huch problems if 
the term “node” is replaced by “part” and “number of free 
valences on a node” is read as “allowed number of labels on 
a part.” In the edge labeling case, this allowed number cor- 
responds to the multipliciy of the edge. 

Part E. .Applications of the Algorithm 

The labeling algorithm is a powerful tool in determining 
the scope and limits of many isomerism questions. It has 
been used, ” for example, to determine the complete set of 
DielssAlder ring svstems which can be formed using atoms 
from the set ChNhSJ04 (along with an appropriate number 
of hqdrogens). and to verify, via construction, the fact that 
there are I3 isomers of the porphyrin ring system substitut- 
ed with four ethyl and four methyl groups. This latter case 
is an interesting one because the number of isomers is com- 
monly given as four lx and has recently been “corrected” to 

” eight. , 41though it has been noted:” that the correction is 
itself erroneous. the actual number (13) has apparently not 
been published.‘? 

In the following, an example is presented which would be 
difficult to solve without the help of a systematic procedure. 
The problem is as follows. Given the adamantane skeleton 
(16) hith 16 free valences and given, as ligands, I hydroxyl 
group, 2 methyl groups, and I3 hydrogens. construct all to- 
pologicallv distinct molecules. Note that because only to- 
pological &.omers are to be considered. there is no distinc- 
tion between enantiomers, nor between structures which 
differ onI> in the orientation (i.e., “asial“ vs “equatorial”) 
of ligand\. To construct these geometrical isomers, one 
\rould firqt number. for reference, the I6 free valences of 
16. then expres\ the 12 spatial rotations (including the iden- 
tit!.) Hhich leave 16 unchanged as permutations relative to 
ihi\ numbering. and finally carry out the labeling using the 
techniques of par1 B. ‘ibovc. .4s stated, the problem I.\ ~umc- 
u hat \implcr. cvcmplifbing a free-\.alencc labeling ;I\ dl\- 
cu\scd in part D. ,:bovc. Structure 17 \hohs the reference 
numbering” IO bc u\ed for the node\. And Table VIII gives 
(he topologlcai \)mmctr> group on the node\ relative to this 
numbcrlng. 

16 17 

Bccau~ there Ltrc three label t>pc\ (H. OH. and (‘11:). 
iabel recursion i:, ncccbhar>... First. the \kcleton i\ l;lbelcd 
ulth I OtI and 15 “blanks. an occurrcncc of \pccr,il C,!W 
1.2; the orbit\ are i 1.2.3.3) and (5.6.7 .X.Y. IO). and ;!,\i)ci;lt- 
ing the \ingic label with the first node ol‘cach orbi!. one (It)- 
I:II~S t\ro partial I:tbeling\ (l&-h). In the \~ccond ~tcp 01‘ 
label rccurkion. the “blank” free \alcncc\ 01 1Xa ;~ri(l 1Xh 

ISa 18b 

are labeled Gth 2 CtI?‘s and 13 H’\ under the appropriate 
reduced \>mmctries. The details are piLen bclo\s 

Case 1. Labeling of IXa. l’ode I i\ di\tinpui\hed b! the 
fact that it carries an h>droxyl group. ;Ind thu\ an! pcrmu- 
tation in Table VIII \\ hich doe\ not ha\? “1.’ JC it, I‘ir<t 
entry is no longer valid. This Icavc~ pcrmulLllion, ! rhrough 
6 (T:lble \‘IIIj in the reduced \>mmctr> group ot 1Ra. .~nd 
t!lc ncu orbits are t?.J.G). 15,6.7). and (q.~.Il)), Ilcre. .i\ !,I 
the re<t of this section, orbits are pir,cn onI\ for thoyc node\ 
rthich arc \tilI to recelic I;lbcls. 

.\t thlc stage. there are more than t\so of WC!) thpe 01 
label and more than one orbit \one ,)I‘ the \pcci;II L‘;IW, 
dpJl1)‘. and thuh orblt recursion is n&cd. II‘ rtle orbit 
(2.3.1). u hich has three free Lalcnccs. I\ ch[,cn. ~hcrc <;rc 
three label dixtributiona to be conaidcrsd. 

Distribution 1. (a) The orbit (2.3.4) rt’ccivcb t\\o (‘11 :‘, 
and one H. Special ww I .Z applic,. and bcc:lu\c there ih 
onl! one orbit. one partial labeling (19) Schultz. 

ib) The rem;llninp t‘rec \:llcnccs of‘ 19 reccitc ten H’,. 
Special case I.1 :lpplies. ,lnd one fuI1 labeling (20) i> i,b- 
t;lrned For clarity. hkdropens :Lrc omitted in 20 and in ,;I1 
other fully labeled structure\ in thi\ e~i:lmple 

lit, \I,. 
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(b) The remaining free valences of 21 receive one CHj 
and nine H’s, Special case 1.2 applies. The labeling in (a) 
reduces the symmetry group to permutations 1 and 2 in 
Table VIII, and the new orbits are (5), (6,7), (8,9), and 
(IO). Associating the single label with the first node in each, 
one obtains four full labelings (22-25). 

H 

Me Me Me 

23 24 25 

Distribution 3. (a) The orbit (2,3,4) is labeled with three 
H’s, for which special case 1.1 is used. The partial labeling 
26 results. 

H 

& 

H OH 

H 

26 

(b) The remaining free valences of 26 are given two 
CHj’s and eight H’s. The labeling in (a) does not reduce the 
symmetry group, and permutations 1 through 6 are still 
valid. The new orbits are (5,6,7) and (8,9,10), and because 
no special cases apply, a second, quite similar level of orbit 
recursion is necessary. 

Distribution 1. (a) Two CH3’s and four H’s are placed on 
(5,6,7). A call to the modified kernel technique is needed, 
and two partial labelings (27a-b) result (see below). 

(b) The remaining free valences of 27a and b are given 
six H’s, for which special case 1.1 is used. Two full labelings 
(28-29) result. 

&H &$ 

Me H 
27a 27b 

Me 

$&H @OH . 

iI, 29 
28 

Distribution 2. (a) One CHj and five H’s go onto (5.6.7). 
Special case 1.2 gives one partial labeling (30). 

(b) The six free valences of 30 are labeled with one CHj 
and five H’s using special case 1.2. Only permutations I 

and 2 of Table VIII are valid for 30, and the new orbits are 
(8.9) and (10). Thus two full labelings (31-32) result. 

H 

30 31 32 

Distribution 3. (a) Finally, (5,6,7) is given six H’s 
through special case 1. I. 

(b) Two CHj’s and four H’s are attached to the six free 
valences in (8,9,10), which is still an orbit because the la- 
beling in (a) destroys no symmetry. The modified kernel 
technique gives (see below) two full labelings (33-34). 

I 
Me 

In the above, two references are made to the modified 
kernel technique. In each use, the orbit contains three nodes 
with two free valences apiece, the symmetry group includes 
all six permutations of these nodes, and the label set con- 
sists of two CH,‘s and four H’s, There are three ways to 
partition these six labels into three multilabels of degree 2. 
For each partition, theie are two multilabels of one type 
and one of the other, so special case 1.2 may be used to 
carry out the node labeling. There is one orbit, so each par- 
tition gives one result. Structures 27a and 33 are derived 
from partition 1, while 27b and 34 are obtained from parti- 
tion 2. 

(cH.,,CH,~) (H.H) (H,H) (partition 1) 
(cH,,H) EH,,H) (H.H) (partition 2) 

Case 2. Labeling of 18b. Here, node 5 bears an OH 
(along with an unfilled free valence which must eventually 
be labeled), and only permutations 1, 2, 7, and 8 are still 
valid. The new orbits are (1,2), (3,4), (5), (6,7,8,9), and 
(IO). The steps in this labeling are analogous to those de- 
scribed in case 1, except that four levels of orbit recursion 
are needed rather than two. Figure 3 gives a schematic il- 
lustration of these steps, which together result in I9 full la- 
belings (structures 35 through 53 in Figure 3). There is one 
call to the modified kernel technique in which the orbit is 
(6,7,8,9), with each node bearing two free valences, the 
symmetry group contains permutations 1, 2, 7, and 8 of 
Table VIII, and the label set is composed of two CHj’s and 
four H’s, These eight labels may be grouped into four mul- 
tilabels as follows. 

(CH,,~H,) (H,H) (H,H) (H,H) (partition 1) 
(cH,,H) (c~~,Hj (H,H) (H,H: (partition 2) 

Labeling the nodes of the orbit with the multilabels in parti- 
tion 1 may be accomplished using special case 1.2. For the 
second partition, the standard kernel technique is needed. 
The steps parallel exactly those given for the decalin exam- 
ple in part B. section 2.3 (see also Figure 2). with three re- 
sulting labelings. In Figure 3. structure 50 is derived from 
partition I. while structures 51-53 are derived from parti- 
tion 2. 

In all, there are 30 unique labelings for this sample prob- 
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Figure 3. Schematic illustratton of :ht: >teps in labeling thu free \alcn- 

ccs of 18b with ?_ methyl groups and I3 hydrogen\ E.n<h boldl’ac< 

arrow Indicates ;i xparate labeling Step, with the pertinent I:ibel ,c‘t 

written on the !eft and the orbit bctn_e labeled wrttten on the right 

(KFV \tar,ds ior “rematning free valences“). The abbrevtatton\ “SC 

!, I and “SC i ..?” refer to \pect~~I cwz> ). I and i .1. re\pcct~vcl\ t wc 

part BI Uew, orbits, uhere the> arc needed. are tirttten bcluu the <or- 

rrspondin_e parttal labelings. For clarttk. hydrogens arc omttted In the 

fully labeled structures. Hhich bear the structure number\ 75-53. 

lem: structures 20, 22-25, 28. 29, 31-34, and (in Figure 3) 
35-53. 
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one writes :he symmetry group in taoular form te 9.. Table Iii). then 
writes the label assocrated wrth each node next to all occurrences of 
the correspondtng node number. If In any column. there IS an element 
uhicn has a drfferent label from the label in the reference numbering 
!rdentity permutation), then the row contatnrng that element can be drs- 
carded ?har IS. a permutatton of the ongrnal group IS vakd for the la- 
beied structure If and only If It acts upon the representation oi !hat MS+ 
ing (see part A! to yreld the Identical representakon 
In thus sectton. ‘call X” means transfer control to X unttl a ietw .rom 
X is encountered. then resume processrng at the potnt where :ne call 
was issued Owrng to the recurswe nature of the algorithm comciex 
hrerarchies of calls are often created durtng complrcatea labelrn9s 
As long as one is seektng Isomers which differ In topology :rattw than 
geometry). then all free valences upon a node may be consrdered 
equivalent. That is. only the numbers of varrous :ypes of ‘$ganos upon 
each node are stgnrftcant. not the spattal distrrbutron of those I,gands 
The generalrzatron outlined here IS not appkcable to cases in which 
stereochemtstry IS rmportant. 
J. Slmek. unpubltshed results. 
See. e g. H R Mahler and E. H Cardes. ‘Brologrcai i)hemrstri. .?no 
ec.. Harper 8 Row. New York, N Y 1971 p 419 
D. Blackman. J. Chem Educ.. 50, 258 (1973) 
W H Eberhardt. J. Chem. Educ.. 50, 728 (1973) 
This IS not the standard chemtcal numbenng but was chosen :o slmpltfy 
the manual computatton of the symmetry group Thrs group IS cerrved 
from that of the tetrahedron wtth nodes l-4 occupyrng the verttces In 
our computerized implementation of the labeling algonthm. topological 
symmetry groups of graphs are calculated automatrcaify 
NOTE ADDED IN PROOF. The correct number has been grven by R L C 
Pilgrim. J Chem Educ.. 51, 316 (1974) 

Agency (SD-183). 


